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The two-configuration self-consistent field formalism previously presented in this Journal
is extended and the CMC SCF LCAO MO (complete multi-configuration self-consistent field
LCAO MO) technique is presented. The single Slater determinant for a 2n electron system is
replaced by a combination of determinants built from two sets of MO’s, one containing »
orbitals; the second, {w — ») orbitals. All the possible donble excitations from the (n) set to
the {w — n) set are considered. The orbitals as well as the linear combination of determinants
are simultaneously optimized making use of the self-consistent field technique.

On expose la méthode du champ self-consistant pour un ensemble complet de plusieurs
configurations, dans 'approximation LCAO-MO (CMC SCF LCAO MO). Le déterminant de
Slater pour un systéme de 2n électrons est remplacé par une combinaison de déterminants
construits a partir de deux ensembles d’orbitales moléculaires, I'un contenant (n) orbitales et
Pautre ( — n) orbitales. On considére toutes les doubles excitations possibles, de I'ensemble
(n) & Yensemble (@ — 7). La technique du champ self-consistant permet d’optimiser simulta-
nément les orbitales ainsi que les coefficients dans la combinaison linéaire de determinants. La
méthode CMC SCF tient plainement compte de la corrélation associée & chaque paire d’élec-
trons et fait intervenir toutes les interactions paire-paire. L’optimisation simultanée des
orbitales des deux ensembles (%) et {w — n) garantit une convergence rapide.

Es wird die Methode des ,,self-consistent field” fiir eine Gesamtheit mehrerer Konfigura-
tionen in der LOAO-Néaherung entwickelt. Kin 2n-Elektronensystem wird nicht mehr durch
eine einzige Slaterdeterminante, sondern durch eine Kombination von Determinanten be-
schrieben, die aus zwei Satzen von Molekiillfunktionen mit n bzw. (w — ) Orbitalen aufgebant
werden. Alle mdglichen zweifachen Anregungen vom {(») zum (@ — n) Satz werden beriicksich-
tigt. Mit Hilfe der SCF-Technik werden sowohl die Orbitale als auch die Kombination der
Determinanten gleichzeitig optimiert.

Introduction

The Hartree-Fock approximation is often used as zero order approximation in
a perturbation series. Alternatively one can use the configuration interaction
technique, where the starting approximation to the total energy (the zero order
energy) can be any one-electron function (generally inferior to the Hartree-Fock).
In a previous work [1, 3] a two-configuration SCF technique was developed and
applied to the first row atoms. The inclusion of only one additional configuration
decreased the correlation error for example in Be(18), B(2P), C(3P), N(2P), O(18)
from 0.0942 a.u., 0.1241 a.u., 0.1580 a.u., 0.232 a.u., 0.306 a.u. to 0.052 a.u.,
0.094 a.u., 0.144 a.u., 0.198 a.u., 0.252 a.u. respectively. In this paper the number
of configurations is no longer restricted to only two, but one can include as many
configurations as needed to obtain an accurate wavefunction. As previously, the
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coefficients of the configuration mixing as well as the form for the orbitals are
simultaneously optimized to ensure fast convergency in the series. For additional
references to the multi-configuration SCF approach we refer to previous work [1],
for references on the correlation energy problem we refer to Ref. [2].

I. CMC SCF MO Equations

We assume that the 2n electrons of a given closed shell system are distributed
in » double occupied orbitals ¢, ... ¢, and we shall refer to this set as the “(n)”
set. A second set of orbitals ¢11) . . . ¢, is used and this will be referred to as the
“{w — n)” set. We consider all the possible double excitations from the (n) to the
(w — m) set, 1.e., we consider #(w — ) configurations. A given excitation from the
(n) set to the (w—n) set will be indicated as { - # where { is a number from 1 to n
and # is a number from » -+ 1 to w.

We shall designate as complete multi-configuration self-consistent field
(CMC SCF) technique the one where each orbital of the (n) set is excited to all
orbitals of the (w — n) set; if an orbital of the (n) set is excited to one or more, but
not all orbitals of the (w — %) set, then we shall describe the technique as incom-
plete MC SCF (IMC SCF).

The wavefunction of the system is

Y= oo Poo + Z Z QtuYeu -

i u

In the above summation and in the following of this paper the summation for the
indices ¢ or ¢’ extends from 1 to % and the summation for the indices % or u’ extends
from 1 to & — n. If one wishes to exclude a number of occupied orbitals from the
excitations, i.e., if a number of orbitals are left uncorrelated, then this requires
simply starting the summation over the index ¢ at some value of ¢ larger than one
(see Appendix). We shall use ¢ or ¢’ as indices for the (n) set and u or %’ as indices
for the (w — n) set.

The energy corresponding to ¥ is

B = a3, yly | H | o) + Et 2 il | H | pou +
/3
+ 3 S awm 2 D awa <y | H | porw > (1 — 0w Suu’) + (1)
t u v u

+ 2y, Z Z Gty <1/)::a I i | Wu>
t u

E= ago E, + Z Z “tzuEW + Z z Aty zat'u LIr (1 — S40r) +
t u i u t’

-+ Z z Aty z Cpopr qul(i - 5uur) -+ 2@00 Z Z e (2)
t u 174 t w
where
Boo=>2m+23 3 Py (3)
t t ¢

Eyy = Eoo — 2hy + 2hyy — 45 Piyy + 45 Pyy — 4Py + 2Pyy + 2Py (4)
7 v

Ijj= Ky {5)
Pij=Jiy— 5Ky . (6)
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By simple algebraic manipulations the energy expression can be rewritten as
E =23 Thi+ 3 Pyr — Ag (b + 23 Poor — Py)] +
t v ¢
+22 Bu(hu’f‘ Puu+22 Ptu)‘i‘ (7)
% i

+ ;22 z W00 Ktn — 2040, Pry) +
t u
- Z z Att/Ku;(ll - 6tt/) + Z Z Bm‘/Kuu/(i - 6”’“,)
t

u
where
1=a’go+ Z}:a?u (8)
t u
Agpr = 3 autliru (9a)
u
AtEAtt = Z(ltzu (gb)
U
Buur = 2, truur (10a)
t
¢
The coefficients 4; and By, are related by the following equations:
1=“§o+2At:@30+zBu (11)
¢ %
or
> A= > By. (12)
t %

The coefficient 4; represents the “fraction of an electron” which is excited from
the ¢; orbital of the (1) set to the ¢, orbitals of the entire (w — ) set. The coefficient
B, represents the “fraction of an electron” in the ¢, orbital of the (w — n) set as
a result of excitation from the entire (n) set. It is therefore tempting to reexamine
the configuration structure of a 2n electron system. The standard electronic
configuration for the 2x electrons is a set of n orbitals. For example 1, has config-
uration
$id5 .. b

Let us call such a configuration a ‘“zero-order electronic configuration”. The
MC SCF LCAO MO function will be a sum of (wn — n?) zero-order configurations
with appropriate coefficients, azy. It is rather difficult to visualize in a simple way

the effect of such a rather long expansion. However, we can make use of the 4;
and B, coefficients and write the following configuration :

JHAD | 20etn $B, .. ¢ 2Ban
(n) set (@ — n) set

which we shall refer to as the “complete electronic configuration”. The set of (n)
orbitals has a fractional occupation equal to (1 — 4;) for the orbital ¢;, whereas
the remaining orbitals [the ¢,’s of the (w — n) set] will have in general relatively
small fractional occupation values By. Clearly the sum of the fractions of electrons
annihilated from the (n) set is equal to the sum of the fractions created in the
(0 ~ n) set, since > A; = > B, [Eq. (12)].

13 u
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The energy Eo, defined in Eq. (3) is formally the SCF MO closed shell energy
expansion; however the ¢; in the CMC SCF formalism are not equal to the ¢; of
the usual Hartree-Fock formalism. If we indicate with Egp the Hartree-Fock
energy, we can state that &y is somewhat lower than H,,, by an amount which
is almost proportional to the correlation error of Exp as can be seen by analysis
of CreMENTI and VeiLLarRD’s ICM results for first row atoms. We now define a
quantity #, = E — F,, which is larger than the correlation energy by the amount
that H,, is larger than Fpgp. It is noted that the correlation energy is commonly
defined as # — Egp. Therefore the CMC SCF formalism differs from most many-
body techniques presented to date insofar as we do not take the Hartree-Fock
energy as the zero-order energy.

We shall briefly analyze the energy expression 7 in terms of £, E, and Eg. For
this purpose we introduce the following definitions:

Bot) = —2h—23 2Py, + 2Py (13)
t?
Ec(u) = 2hy + 2Pyy + 22 2Py, (14)
t
B (tu) = 2a40 Ky — 4o Pry {15)
E ) = Ku(1 — dsr) (16)
E (un') = Kyy (1 — Oyus) . (17)

We can now write

E=Ey+ z Al (8) + Z By B o(u) -+ Z agyl (tu) +
¢ % tu

+ > A Bty + 2 BuwE(uu') . (18)
[724 uu’

The first term is the contribution to ¥ given by the one-electron model. The
second term is a correction to H,, obtained by annihilation of electrons in the ()
set. The third term is the energy of the electrons created in the (w — n) set. The
fourth term is interaction of created and annihilated electrons. The fifth term is
the interaction energy resulting from any pair of electrons in a ¢; orbital inter-
acting with any pair of electrons in a ¢;- orbital. Therefore it is the pair-pair
interaction in the (n) set. The last term is the pair-pair interaction in the (w — »)
set.

Let us now continue with the development of the CMC SCF LCAO MO theory.
We wish to obtain the best ¢,’s and ¢,’s, making use of the variational principle,
ie., by requiring that (0E/0¢:) =0 and (0E[od,) = 0. In addition we have to
satisfy the equation (8E/[0a,0) = 0 and (0E|0a;y) = 0 in order to obtain the best
multiconfiguration expansion. We shall make use of the Lagrangian multiplier
technique for determining ¢; and ¢y, and of the solution of the secular equation
for determining the ay, coefficients.

Let us define the following operators:
Fi=1—A) b+ 23 (1 — 4; — Ag) Py + 24, P+ 25 By Py +
24 u

+ S (@00 atu Koy — 203, Py) + > Agir Kio(1 — 6111) (19a)
u 144
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and
Fy = Bylhy + 2Py + 22Pt) + z (g0 Goo Kt — 25%2”, Py +
4 H

+ 2 Buur Ko (1 — Suur) (19D)

where Py = (¢¥ | P;| > and Ky = (¢} | K; | ¢;>. Differentiation of & with
respect to the variational parameters d¢, du, @0, ey, brings about the following
relation:

OF =23 (o4} IFt|¢t>+2tZ<¢z* | Fy [ 0dey + 23 O3 | Fu | du> +
+t2Z (g | Fu | 6 + 2; 0As (—he — 2§Ptt' + Pu) + (20)
+ 2% 0By (hy + Puu + th Py) + 20040 ; 2, otu Keu +
+ 2§ > Oagy [@oo Keu — 4y Pray + gatlu K:;/(f[ — Sur) F
+ > CttZ:Kuwﬂ — Oyur)] -

u’
The variational principle is satisfied for ¢, and ¢, if (0E/[0¢;) = 0 and (@E[0d,) = 0.
However the variation in the ¢’s is constrained by imposition of the orthogonality
relations

{Bi | 5> = Oy (21)

where the indices 7 and j run over the full (n) and (w ~— %) sets. By setting Hq. (20)
to zero, then by differentiation of the above equation, and finally by joining the
resulting equations, we obtain the relation which defines ¢; and ¢,

Fidy — > Oy, Ggpr — > duur = ¢ 0p (22a)
24 u
Iy ¢u - z () ¢u’ﬁuu’ - E ¢t'l9tu = ¢u Dun (22b)
u! t

where > ® and > ) exclude the terms with ¢ = f and »’ = w from the summations
124 u’

and ¢ are proportional to the yet undetermined Lagrangian multipliers, —4/2.

The above equations can be written as

| Ft | ¢e> — tzl(t)l¢t'> Bt | Fe | by — 2| dud {Bu | Fi | $) = | de> Far (23a)
| Fy | ¢ud — ZI(“)|¢W><¢W | Py | $u) — tZ[¢t> (bt | Fu | up = | pu) Puu (23b)

which can be rewritten as
| By — Ti — Ty | ey = | ¢s) Dut (24a)
| Py — Uy — Up | $u) = | $u) Duu (24b)
where 7'y and T, are the hermitean operators corresponding to second and third
operators in Eq. (23a) and U, and Uy are the hermitean operators corresponding
to second and third operators in Eq. (23Db).
We now turn our attention to the variables ago, 4;, By and a;y,. These are not

independent, because of Eqgs. (11) and (12). Differentiation of Egs. (8), (9b), and
(10b) brings about the following relations:
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0 = agobag, + z Z gy Oty (26)
L u
6A¢ = 22 Ay 6am (26&)
u
0B, = 22 Ay Ottyy (26D)
12

Joining Eqs. (26a) and (26b) with Eq. (20) we obtain, taking into account the
constraints of Kq. (25) by the Lagrangian multipliers --2/2:

LZ % Aty Koy — Moo = 0 (27)
u( —2hs — 4; Py + 2Py + 2hy + 2Pyy + 4% Pyry — 4Py — ) +
+ @ooKiu -+ %:at’uKtt'(i — Ogr) + g tu Kyu(1 — Ouu’) = 0. (28)
It can be proved easily that 1 = E — E,,. We can now write
(Boo — B) oo+ 2, 2 s Kiu =0 (29)
(Biy — B) sy +000 Kgu -+ 2. 2, aprur(Kesr Suur + Ky 800) (1 — Suar 8s20) = 0. (30)

One will recognize in the above equations the standard secular equations for the
configuration interaction (C.I.) treatment. Indeed, Ky, and By, are the diagonal
elements, the second term in Eq. (29) represents the interaction energy between
the zero-order configuration and the configurations arising from ¢ -» % excitations,
and finally the third term of Eq. (30) represents the interaction energy between
excited configurations.

In the past, use has been made of “virtual orbitals” in the configuration
interaction technique. It is noted in this regard, that the ¢, of the (w — n) set are
quite different from the virtual orbitals of a standard SCF LCAO MO computa-
tion. The reason is that virtual orbitals have very little physical meaning: they
are obtained from diagonalization of the Fock equation, are orthogonal to the
occupied orbitals, but the variational principle can not act on them, since they do
not contribute to the total energy. In general the virtnal orbitals have very little
overlap with the occupied orbitals and therefore are of little use in correlating the
electrons of the occupied orbitals.

It is noted that a given ¢, will mainly be used to correlate one, or at most two
or three ¢; and therefore the remaining (n — 1) or (n — 2) or (n — 3) ¢¢’s which
are promoted to that given ¢, will add little to the correlation eorrection. How-
ever, by including the (n — 1) or (n — 2) or (»n — 3) remaining orbitals of ¢;’s we
will include part of the pair-pair correction in the total energy at no extra cost. In
addition the inclusion of the additional excitation allows us to make use of the
equality > By = > A; with the simple physical meaning for each By and A4; as
previously explained. Therefore, for a given A; and a given B, there are one or at
most very few leading terms in the > a2, or in the > @}, summation, respectively.

2 ¢
The IMC SCF treatments consider only the leading terms in A4; or By, and this
requires more accurate optimization of the basis set for the ¢; and ¢, which is very
time-consuming in the computation.
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Inspection of the energy expression Eq. (18) reveals the reason for the often-
found poor agreement between computed orbital energies e; (the eigenvalues of
the Fock equations) and ionization potentials or excitation potentials in the
standard SCF computations, where Eoo = > (¢; + hs). As known, one reason is

¢
that the orbitals in the excited configuration or in the ionized molecule often
differ sufficiently from the ground state orbitals even in the SCF LCAO MO
approximation. The second reason is clearly obvious by inspection of Eq. (18),
namely that the numerical values of the 4; and By coefficients will, in general,
vary from the ground state to the excited states of a neutral molecule or from the
ground state of the neutral molecule to the ground state of the ionized molecule.

It is tempting to consider the possibility of & semiempirical scheme whereby
the correct ionization potential or the correct excitation energies are obtained by
empirically determining the 4; and B, fractional occupation values. It is noted
that the justification of the use of empirical parameters in the Pariser-Parr tech-
nique lies in the fact that the one-electron approximation assumes 4; = By = 0,
whereas in an exact theory 4; and B, are different from zero.

II. The CMC SCF LCAO MO Equations

Let us continue with the CMC SCF LCAO MO analysis and let us consider the
consequences of the LCAO approximation to a given MO, or the consequences of
expanding an orbital in terms of a given basis set.

Since the orbitals ¢, ... ¢, ... ¢, are expanded as linear combinations of a
given basis set y; we can write

$i= 2 Cipip (31)
V4

and, noticing that a given orbital will transform as one of the irreducible represen-
tations A (or ) of the symmetry group appropriate to the 2z electron systems, we
shall have

Bini = 2 CiipYiap = € Ypa (32)
V4

where the index o (or B) specifies the degenerate component in the case 4 is a dege-
nerate representation and where c;; and Y, express in vector notation the orbital
d14i- By introducing the following notation

()Sapg = % ave | Xagsy (33)
(d2)Hpg = %(%ﬂpx | H | y1g0> (34)
(G0 Kipg,prs = 3 Clon 28 | rial 2Bs iy (35)
(@4 ) Prpg,ers = g Ctlop 28y | 713 | 255y 2550y —%F Kapg,urs (36)

where d; and d, are the dimensions of the degeneracy in the A and u representa-
tions, we can define the matrices Hj, S;, Pi, Ky, and the matrices #° = > Hj,

A
F=38 P=>>Pyu A =72 K, The SCF technique in the matrix
p3 A ou A u

10 Theoret. chim, Acta (Berl.) Vol. 7



140 A. VErLLARD and E. CLEMENTI:

Hartree-Fock formalism reduces to the problem of finding the best set of compo-
nents ¢y for any orbital ¢, described by a given basis set y1,.

We shall drop in the following the subscript « since in our program the n
degenerate vectors appear explicitly as » vectors. This does not require any addi-
tional computation time, since only one of the set is computed and the remaining
(n — 1) vectors are put equal to the first.

Let us introduce the following density matrices:

Dy, rs = Nas Cor Css (87)
Dy = Nycltyen (38)
n)
Dy =Dy (39)
:
(n)
Dy, pu = D s, 5u Dis (40)
!
(n) 9
DY yu = 2,63y Dt (41)
¢
(n)
Dya =2 AuDy (42)
:
Dy =N CTAu Cru (43)
(@)
Dy, ut = 2 tptpuDiu (44)
u
(w) 5
D;,k, ut = Z Ayt,iu Dy, (45)
u
@
D/‘.,B = Z BzuDAu (46)
U

where the a;; .y is the mixing coefficient for the excitation At — yu; Az and B,y

(n) Ha
are the A; and B, previously defined. The notation » stands for J and the
b

b=1
(o) Wg-Ng
notation > stands for >
b b1

The equations which define the ¢; and ¢, are now written in the form

Fiicas = (€ $30ue/Nis) + 2 ) (casr SaPases/Nag) + 2, (Cau SaPauef/ N i) (47)
tr %
Frucau = (€10 $301uu/Naw) + 2, (% (caur S10sus ufNow) + 2 (€2t SaPuuf/Niw) (48)
(74 £

where

Fpp= (1 — Ap)H; + (1 — Az) Py— P+ A3 Pi +PF+30,0 K5 —

(w)  (m)
— P L LSS S S Gatepu tarer pu (1 — Ot ee) K3'Y {49)

uou At
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Fuy = By (Hy + P¥+ P}.)‘l‘%aooK?}f— Pﬁu* +
n) (@)

+3 % 333ty (1= Sruarur) KA. (50)
In the Eqgs. (49) and (50) we have made use of the following definitions:

Pipg = ﬂz %qu,msDnrs (51)

Piy = % 128 Pipg,urs Durs, 4 (52)

fe = 2 PapgirsDiirs (53)

Ky = ; 2 Kipg urs D (54)

Pprq = % % Pipg,urs Durs, B (55)

Pl = 3 3 Pigure Dresi (56)

K%fq = %Klpq,zfrsDA'z,rs (57

where the index 4 stands for £ or % in Egs. (49) and (50). The off-diagonal Lagrang-
ian multipliers 9y; with ¢ # § can be eliminated by introducing the U and 7' ope-
rators as previously done Eq. (24). In the LCAO approximation we obtain

(Fae + Ti + Tip)ers = casSidass/Nas (58)
and
(Fﬂu + Usu + U;.u) Cru = C‘Au Slﬁluu/Nzu (59)
where
T =— 2O (Sicu Fascn + Frcar Sacanr) (60)
t’
Ty = — > (S1cauFiscru + Fiscau Srcau) (61)
('3
Ui = — 2, (SacuFaucas + Frycn Srca) (62)
¢
U;.u = - zm) (82 G Frucru + Frucau Sacau’) . (63)
u/

Eqgs. (58) and (59) are the CMC SCF LCAO MO equations, where the Lagrangian
multipliers ¢ are to be identified with the orbital energies. The above formalism
can be easily modified into the IMC SCF LCAO MO formalism.

In the appendix we report the necessary modifications of the above equations
for the case where a number of orbitals of the (n) set are left uncorrelated (for
example the core electrons). In the computer program we have written, this is an
optional input specification.
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Appendix
The CMC SCF LCAO MO Equations with Core

Let us introduce now some ““core” orbitals ¢y which are left uncorrelated: the
corresponding electrons are never excited to orbitals of the second set. We use k
and / as indices for this core set, running from 1 to n.. The energy expression can
be written exactly as in Eq. (7) with an additional term:

B = formula (7) +

e Ne n w~n
2> [hx+ 2 Pr+22 (1 — Ag) Py + 23 BuPryl. (64)
F=1 =1 -1 w=1

The variational principle is now applied for ¢z, ¢: and ¢,. We define the
following operators on the LCAO approximation:

F{oe— H; + P§® + P, — P§ + P (65)
Fj; = Formula (49) 4 (1 — Ay) P§re (66)
F,y = Formula (50) - Bjy PS . (67)
We made use of the following definitions:
Re
Dfore = > Nupchicum (68)
r=1
PSere — S Py, DOore, (69)
u

It is found easily that the equations which define ¢y, ¢; and ¢, are now written in
the form

Fio ca = Zl (€21 83 Dun/Nx) + % (cat S3Pun/Nax) +
+ % (cru S20ur/Nix) (70)
Faen = (cx Sidaue/Nae) + % ® (e’ Saduef Nu) +
+ % (cru Sa0aut/ Nat) + % (car 8201t/ N 1z) (71)
Frucm = (€ru Siwu/Nu) + %I @ (cru’ SaDruu/Nw) +
+ ; (cat S1Daeu|Naw) + % (1 SaParu/N ) - (72)
Eqs. (71) and (72) are the exact counterparts of Eqs. (47) and (48). By elimi.

nating the off-diagonal Lagrangian when necessary we obtain the following
equations:

(F + By + Ry) e = > (e SaPur/Nix) (73)
1

(Fae + Tas + Ti + T €ae = €16 $1%s/ N3 (74)

(Fi.u + Usu + U,’W, + U:{u) Ciy = Cly Slﬁzuu/NAu . (75)

T, T, U, U’ are the operators defined in Eqs. (60) to (63). B, R/, 7" and U" are



Complete Multi-Configuration Self-Consistent Field Theory

new operators defined as:

Ri=— 3 (Sicu F§ ¢y + F§ ¢ Sy )

R = — > (8110 F§ ciu + F 10, 81 €10)

(Sican Facax + Fascar Sacan)

Us=— > (S Frucir + Fruc Sicar) -

3
I
=M =M =M oM

The secular Eqgs. (29) and (30
Eq. (64), Eyp and Hy,.

~—
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