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The two-configuration self-consistent field formalism previously presented in this Journal  
is extended and the CMC SCF LCAO MO (complete multi-configuration self-consistent field 
LCAO MO) technique is presented. The single Slater determinant for a 2n electron system is 
replaced by a combination of determinants built from two sets of 1riO's, one containing n 
orbitals; the second, (~o - n) orbi~ls.  All the possible double excitations from the (n) set to 
the (~o - n) set are considered. The orbitals as well as the linear combination of determinants 
are simultaneously optiraized making use of the self-consistent field technique. 

On expose l~ m~thode du champ self-consistent pour un ensemble complet de plusieurs 
configurations, dans l 'approximation LCAO-MO (ClVtC SCF LCAO 1rIO). Le d&terminant de 
Slater pour nn syst~me de 2n 61ectrons est remplac6 par une combinaison de d6terminants 
construits ~ partir de deux ensembles d'orbitales mol6culaires, l 'un contenant (n) orbitales et 
l '~utre (co - n) orbitales. On consid~re routes les doubles excitations possibles, de l 'ensemble 
(n) k l 'ensemble (~o - n). La technique du champ self-eonsistant permet d'optimiser simulta- 
n4ment les orbitales ainsi que les coefficients darts la combinaison lin~aire de determinants. La 
m6thode CMC SCF tient plainement compte de la corr61ation associ~e ~ chaque paire d'61ec- 
irons et fair intervenir routes les interactions paire-paire. L'olotimisation simultan6e des 
orbitales des deux enserables (n) et (co - n) gar~ntit une convergence rapide. 

Es wird die Methode des ,,self-consistent field" fiir eine Gesamtheit mehrerer Konfigura- 
tionen in der LCAO-N/~herung entwiekelt. Ein 2n-Elektronensystem wird nicht mehr durch 
eine einzige Slaterdeterminante, sondern durch eine Kombination yon Determinanten be- 
schrieben, die aus zwei S~tzen yon Molekfilfunktionen mit  n bzw. (~o - n) Orbitalen aufgebaut 
werden. Alle inSglichen zweifachen Anregungen yore (n) zum (w - n) S~tz werden berfieksich- 
tigt. Mit Hilfe der SCF-Technik werden sowohl die Orbitale als aueh die Kombination der 
Determinanten gleichzeitig optimiert. 

Introduction 

The Hartree-Foek approximation is often used as zero order approximation in 
a perturbation series. Alternatively one can use the configuration interaction 
technique, where the starting approximation to the total energy (the zero order 
energy) can be any one-electron function (generally inferior to the I~Iartree-Fock). 
In a previous work [I, 3] a two-configuration SCF technique was developed and 
applied ~o the first row a~oms. The inclusion of only one additional configuration 
decreased the correlation error for example in Be(iS), B(2P), C(ap), N(~P), 0(IS) 
from 0.0942 a.u., 0.1241 a.u., 0.1580 a.u., 0.232 a.u., 0.306 a.u. to 0.052 a.u., 
0.094 a.u., 0.141 a.u., 0.198 a.u., 0.252 a.u. respectively. In this paper the number 
of configurations is no longer restricted to only two, but one can include as many 
configurations as needed to obtain an accurate wavefunction. As previously, the 
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coefficients of the configuration mixing as well as the form for the orbitals are 
simultaneously optimized to  ensure fast convergency in the series. For  additional 
references to the multi-configuration SCF approach we refer Co previous work [1], 
for references on the correlation energy problem we refer to  Ref. [2]. 

I. CMC SCF M0 Equations 

We assume tha t  the 2n electrons of  a given closed shell system are distr ibuted 
in n double occupied orbitals r . .  �9 Cn and we shall refer to this set as the "(n)" 
set. A second set of  orbitals r �9 �9 �9 r is used and this will be referred to as the 
"(co - n)" set. We consider all the possible double excitations from the (n) to the 
(~o - n) set, i.e., we consider n(m - n) configurations. A given excitation from the 
(n) set to  the (co-- n) set will be indicated as t -~ u where t is a number  from i to n 
and u is a number  from n § i to  co. 

We shall designate as complete multi-configuration self-consistent field 
(CMC SCF) technique the one where each orbital of  the (n) set is excited to all 
orbitals of  the (co - n) set; if  an orbital of  the (n) set is excited to one or mor% but  
not  all orbitals of  the ((o - n) set, then we shall describe the technique as incom- 
plete MC SCF (IMC SCF). 

The wavefunet ion of  the system is 

~[1 = aoo~foo + ~ ~ atu~ftu . 
t u 

I n  the above summat ion  and in the following of  this paper  the summat ion  for the 
indices t or t' extends f rom I to n and the summat ion  for the indices u or u '  extends 
from i to  o~ - n. I f  one wishes to exclude a number  of  occupied orbitals f rom the 
excitations, i.e., ff a number  of  orbitals are left uncorrelated, then this requires 
simply start ing the summat ion  over the index t a t  some value of  t larger than  one 
(see Appendix).  We shall use t or t' as indices for the (n) set and u or u '  as indices 
for the (o~ - n) set. 

The energy corresponding to ~ is 

E = a2oo <V*o ] H I Voo> + ~ ~ a2tu<V~u ] U I Vtu> + 
t u 

2c Z 5 a tu  5 Z a t ,  u '  <~Yt*u ] g ] ~ t , u ,  > (~- - -  ~ t t '  (~uu') J-  (J-) 
t ~, t t r r 

t u 

t u t ~ tt 

+ Z Z Z - + 2%o Z Z (2) 
t U t t  I t ?~ 

where 
Eoo = ~ 2ht + 2 ~ ~ Ptt, (3) 

t t t t 

Etu = Eoo -- 2ht + 2hu - 4 ~ Ptt, + 4 ~ Pt, u - 4Ptu zr 2Pun + 2Ptt (4) 
t I l p 

l~j = IQj (5) 

~K P i j = J ~ j - - ~  I j .  (6) 
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By simple algebraic manipulations the energy expression can be rewritten as 

E = 2 2  [ht + 2 Ptt, -- At (ht + 2 2 Ptt, -- Ptt)] + 
t t t t t 

+ 2 2  Bu(hu + Puu + 2 2  Ptu) + 
u t 

+ :2~ ~ atu(aooKtu -- 2atuPtu) + 
t u 

+ ~ E A~.K.,(I  - a.,) + E ~ B~,Ku. , ( l  - ~ , )  
t t t u u t 

where 

o r  

(7) 

t u 

The coefficient At represents the "fraction of an electron" which is excited from 
the Ct orbital of the (n) set to the Cu orbitals of the entire (co - n) set. The coefficient 
Bu represents the "fraction of an electron" in the Cu orbital of the (co - n) set as 
a result of excitation from the entire (u) set. I t  is therefore tempting to reexamine 
the configuration structure of a 2n electron system. The standard electronic 
configuration for the 2n electrons is a set of n orbitals. For example ~oo has config- 
uration 

r r  r 
Let us call such a configuration a "zero-order electronic configuration". The 
MC SCF LCAO MO function will be a sum of (con - u s) zero-order configurations 
with appropriate coefficients, atu. I t  is ra ther  difficult to visualize in a simple way 
the effect of such a rather  long expansion. However, we can make use of the At 
and Bu coefficients and write the following configuration: 

r r m-~.) ~2~ ~ ~ _ .  
�9 n T n - k l "  " " r ~  

(n) set (co - n) set 

which we shall refer to as the "complete electronic configuration". The set of (n) 
orbitals has a fractional occupation equal to (t - At) for the orbital Ct, whereas 
the remaining orbitals [the Cu's of the (m -- n) set] will have in general relatively 
small fractional occupation values Bu. Clearly the sum of the fractions of electrons 
annihilated from the (n) set is equal to the sum of the fractions created in the 
(co -- n) set, since 2 At = 2 Bu [Eq. (t2)]. 

t u 

2 2 i : ~oo+ Z Ea . ,  (s) 
t u 

A t t ,  = 2 a t u a t ,  u ( 9 a )  
u 

At =- Art = ~ a~ (9b) 
u 

t~uu, : 2 atuatu, (lOa) 
t 

Bu -= Buu = Y 4~.  00b) 
t 

The coefficients At and Bu are related by  the following equations : 

2 ~ A t  I = %0 + = aoo + ~ B~ ( t l )  
t u 



136 A. VEILLARD and E. CLEMEI~TI: 

The energy Eoo defined in Eq. (3) is formally the SCF MO closed shell energy 
expansion; however the r in the CMC SCF formalism are not equal to the r of 
the usual Hartree-Foek formalism. I f  we indicate with EHF the Hartree-Foek 
energy, we can state that  EHF is somewhat lower than Eoo, by an amount  which 
is almost proportional to the correlation error of EH~ as can be seen by analysis 
of CL]~Mn~TI and V]~iLLA~D'S ICM results for first row atoms. We now define a 
quanti ty Ec = E -- Eoo which is larger than the correlation energy by  the amount  
tha t  Eoo is larger than EHF. I t  is noted tha t  the correlation energy is commonly 
defined as E - EHF. Therefore the CMC SCF formalism differs from most many- 
body techniques presented to date insofar as we do not take the Hartree-Fock 
energy as the zero-order energy. 

We shall briefly analyze the energy expression 7 in terms of E, Ec and Eoo. For 
this purpose we introduce the following definitions: 

Ec(t) = - 2ht - 2 ~  2Ptt,  -~ 2Ptt  (13) 
t p 

Ec(u) = 2hu + 2Puu + 2 ~ 2Ptu (t4) 
t 

Ec(tu) = 2aooKtu - 4atuPtu (t5) 

Ec(tt p) = K t t , ( : [  - ~ t t , )  (16) 

(17) Ec(uu') = Kuu , ( t  - duu,) . 

We can now write 

E = Eoo q- ~ AtEc(t) § Z BuEc(u) q- ~. atuEc(tu) q- 
t u t u  

§ ~. Att,Ec(tt ') § ~ Buu ,Ec(uu ' ) .  (18) 
t t  t u u  t 

The first term is the contribution to E given by the one-electron model. The 
second term is a correction to Eoo obtained by annihilation of electrons in the (~) 
set. The third term is the energy of the electrons created in the (co -- n) set. The 
fourth term is interaction of created and annihilated electrons. The fifth term is 
the interaction energy resulting from any pair of electrons in a r orbital inter- 
acting with any pair of electrons in a r  orbital. Therefore it  is the pair-pair 
interaction in the (n) set. The last term is the pair-pair interaction in the (co - n) 
set. 

Let  us now continue with the development of the CIVIC SCF LCAO MO theory. 
We wish to obtain the best r and Cu'S, making use of the variational principle, 
i.e., by  requiring tha t  (3E/~r 0 and (~E/~r 0. In  addition we have to 
satisfy the equation (OE/~aoo) = 0 and (~E/~atu) = 0 in order to obtain the best 
multiconfiguration expansion. We shall make use of the Lagrangian multiplier 
technique for determining r and Cu, and of the solution of the secular equation 
for determining the atu coefficients. 

Let  us define the following operators: 

Ft  = (1 -- At) ht -]- 2 ~  (1 -- A t  -- At , )  Pt ,  § 2A tP t  A- 2 ~  B u P u  -t- 
t t 

+ ~ (aooatuKu - 2a~uPu) q- ~ A u ,  Kt , ({  -- ~tt,) (t9a) 
u t t 
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and 
Fu = Bu(hu § 2Pu § ~ 2Pt) + ~ (atuaooKt - 2a~u Pt) + 

t t 

+ ~ Buu, Ku, (t - duu,) (t9b) 
U ! 

where Pij = (r ] P~ !r and K~j = (r I Kj I CJ}' Differentiation of E with 
respect to the variational parameters Ct, Cu, aoo, atu, brings about the following 
relation: 

(~E = 2 ~ (8r 1Ft le t )  + 2 ~ (r I Ft 1(5r + 2 ~  (de* [Fu I Cu} + 
t t 

+ 2 ~  (r I F u l ( ~ r  (20) 
u t t 

+ 2 ~ ~B~ (h~ + l~ + 2 ~ Pt,.) + 2~oo ~ ~ ~u K~, + 
u t t u 

-1- 2 ~  ~ (}atu [aooKtu -- 4atu Ptu ~- ~ at, u Ktt,(1 - (3tt,) + 
t u t v 

-t- ~ atu,Kuu,(l -- C}uu,)] . 
U ! 

The variational principle is satisfied for Ct and Cuff (OE/~r = 0 and (OE/Or = O. 
However the variation in the r is constrained by imposition of the orthogonality 
relations 

<r I CJ> : ~J (21) 

where the indices i and j run over the full (n) and (co - n) sets. By setting Eq. (20) 
to zero, then by differentiation of the above equation, and finally by joining the 
resulting equations, we obtain the relation which defines Ct and Cu: 

F t C t  - -  ~ ( t ) r  - -  ~ C u ~ u t  = C t t S t t  (22a) 
t t U 

- F u C u  - -  ~ ( u ) ( g u ~ u u ' -  ~ C t O t u  = C u ~ u u  ( 2 2 b )  

u r t 

where ~ (t) and ~ (u) exclude the terms with t' = t and u' = u from the summations 
t t Ut 

and ~ are proportional to the yet undetermined Lagrangian multipliers, - ~ j / 2 .  
The above equations can be written as 

t t u 

u r t 

which can be rewritten as 

I F u  - Uu  - -  Ut  [ Ca} = I Ca} Ouu (24b) 

where Tt and Tu are the hermitean operators corresponding to second and third 
operators in Eq. (23a) and Uu and Ut are the hermitean operators corresponding 
to second and third operators in Eq. (23b). 

We now turn our attention to the variables aoo, At, .Bu and atu. These are not 
independent, because of Eqs. (1t) and (t2). Differentiation of Eqs. (8), (9b), and 
(t0b) brings about the following relations: 
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0 = aoo~aoo d- ~ ~ atu(Satu (25) 
t u 

~A~ = 2 ~ atu~atu (26a) 
u 

~Bu = 2 ~ atu ~atu �9 (26b) 
t 

Joining Eqs. (26a) and (26b) with Eq. (20) we obtain, taking into account the 
constraints of Eq. (25) by the Lagrangian multipliers -2 /2  : 

~ atu Ktu - ~.aoo = 0 (27) 
t u 

atu(-2ht  - 4 ~  P t t ' §  2Ptt d- 2hu d- 2Puu § 4 ~  Pt'u - 4Ptu - 4) § 
$P t t  

d- aooKtu § ~ at,uKu,(l -- Oft') § ~ atu Kuu'( l  - ~uu') -= O . (28) 
tr u l  

I t  can be proved easily that  ~ = E - Eoo. We can now write 

(Eoo - E) aoo § ~ ~ atu g tu  = 0 (29) 

(Etu - E ) a t u  +aooKtu + ~ ~ at,u,(Ktt, ~uu, § Kuu, (~u,)(~ - ~uu, ~tt,) = 0. (30) 

One will recognize in the above equations the standard secular equations for the 
configuration interaction (C./.) treatment.  Indeed, Eoo and E~u are the diagonal 
elements, the second term in Eq. (29) represents the interaction energy between 
the zero-order configuration and the configurations arising from t -+ u excitations, 
and finally the third term of Eq. (30) represents the interaction energy between 
excited configurations. 

In  the past, use has been made of "virtual orbitMs" in the configuration 
interaction technique. I t  is noted in this regard, that  the Cu of the (w -- n) set are 
quite different from the virtual orbitals of a standard SCF LCAO MO computa- 
tion. The reason is tha t  virtual orbitals have very little physical meaning: they 
are obtained from diagonalization of the Fock equation, are orthogonal to the 
occupied orbitMs, but  the variational principle can not act on them, since they do 
not contribute to the total energy. In  general the virtual orbitals have very little 
overlap with the occupied orbitals and therefore are of little use in correlating the 
electrons of the occupied orbitals. 

I t  is noted that  a given Cu will mainly be used to correlate one, or at most two 
or three Ct and therefore the remaining (u - i) or (n - 2) or (n - 3) Ct's which 
are promoted to that  given Cu will add little to the correlation correction. IIow- 
ever, by including the (• - i) or (n - 2) or (n - 3) remaining orbitals of r we 
will include part  of the pair-pair correction in the total energy at no extra cost. In  
addition the inclusion of the additional excitation allows us to make use of the 
equality ~ Bu = ~ As with the simple physical meaning for each Bu and As as 
previously explained. Therefore, for a given As and a given Bu there are one or at 
most very few leading terms in the Z a~u or in the ~. a 5 summation, respectively. 

u t 
The Is SCF treatments consider only the leading terms in As or Bu, and this 
requires more accurate optimization of the basis set for the r and Cu which is very 
time-consuming in the computation. 
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Inspection of the energy expression Eq. (18) reveals the reason for the often- 
found poor agreement between computed orbital energies et (the eigcnvalues of 
the Fock equations) and ionization potentials or excitation potentials in the 
standard SCF computations, where Eoo = ~ (st q-ht). As known, one reason is 

t 

tha t  the orbitals in the excited configuration or in the ionized molecule often 
differ sufficiently from the ground state orbitals even in the SCF LCAO MO 
approximation. The second reason is clearly obvious by inspection of Eq. (18), 
namely tha t  the numerical values of the At and Bu coefficients will, in general, 
vary  from the ground state to the excited states of a neutral molecule or from the 
ground state of the neutral molecule to the ground state of the ionized molecule. 

I t  is tempting to consider the possibility of a semiempirical scheme whereby 
the correct ionization potential or the correct excitation energies are obtained by  
empirically determining the At and Bu fractional occupation values. I t  is noted 
tha t  the justification of the use of empirical parameters in the Pariser-Parr tech- 
nique lies in the fact tha t  the one-electron approximation assumes At = Bu = O, 
whereas in an exact theory At and Bu are different from zero. 

II .  The CMC SCF LCA0 M0 Equations 

Let  us continue with the CMC SCF LCAO MO analysis and let us consider the 
consequences of the LCAO approximation to a given MO, or the consequences of 
expanding an orbital in terms of a given basis set. 

Since the orbitals r . . -  Cn . . -  r are expanded as linear combinations of a 
given basis set Zt we can write 

P 

and, noticing tha t  a given orbital will transform as one of the irreducible represen- 
tations ~ (or #) of the symmetry  group appropriate to the 2n electron systems, we 
shall have 

r162 = ~ czp)~,p = c~iZ~ (32) 
79 

where the index c~ (or fi) specifies the degenerate component in the ease ), is a dege- 
nerate representation and where cz  and Za~ express in vector notation the orbital 
r  By introducing the following notation 

(d~)Hxpq = E <Zxp~ [ H  [Zxq~,> (34) 

(dxd~,)Kxvq,grs ~/~ (1)  . (2) ~ ' 1  . (1) ^ (2) k 

(dxd,)tSvq,,rs = ~ / . ( 1 ) .  (2) ^ (1) ~ (2)\ _�89 (36) 

where d~ and d r are the dimensions of the degeneracy in the ~ and # representa- 
tions, we can define the matrices H~, $~, P~., K~. and the matrices ~ = ~ H~, 

s 

~9 v = ~ S~, ~ = ~ ~ P~., 3~ = ~. Y. K~.. The SCF technique in the matrix 

l O  T h e o r e t .  china.  A c t a  (]3erl . )  V o l .  7 



140 A. VEILLARD a n d  E.  CLE~IENTI: 

Hartree-Fock formalism reduces to the problem of finding the best set of compo- 
nents carp for any orbital Cat~ described by a given basis set Za~. 

We shall drop in the following the subscript ~ since in our program the n 
degenerate vectors appear explicitly as n vectors. This does not require any addi- 
tional computation time, since only one of the set is computed and the remaining 
(n -- i) vectors are put  equal to the first. 

Let  us introduce the following density matrices: 

Dat, rs = Nat c~tr cats (37) 

Dat = Nat Ctat Cat (38) 

(n) 
Da = ~ Bat (39) 

t 

(n) 
Da, t,u = ~ aat,~uDat (40) 

t 

(n) 
$ 2 D~ ,uu = ~, (41) aat,~u Oat 

t 

(n) 
.Da, A = ~ AatDat (42) 

t 

Dan = Nau Ctau Cau (43) 

(o0 
Da, .t  = ~ a.t,au Dau (44) 

u 

(,o) 
$ 2 Da, .t  = ~ a#t,au D~u (45) 

u 

(,o) 
Da, B = ~ Bau Dau (46) 

u 

where the aat,~u is the mixing coefficient for the excitation )~t -+ izu; Ant and B~,u 
(n) n, 

are the At  and Bu previously defined. The notation ~ stands for ~ and the 
b b=l  

(~) ~-n~ 
notation ~ stands for ~, 

b b ~ l  

The equations which define the Ct and Cu arc now written in the form 

F,~tcat = (C~t S).~att/N;ct) q- ~ (t) (cat, Sa~2ttt/1V,~t) q- ~ (c,~u S2~,zut/Nat) (47) 
t t U 

Fa~, ca. = (ca,, S~a, . , /Nau) + V (,o (ca,,, Sa~a,,, ,,/N~,,) + ~ (cat Sa~at,,/Na,,) (4s) 
U t t 

where 

Fat = (:t - Aat)Ra + 0 - Ant) P ~ -  P~ + A a t P i  + P~ + �89 - 
( ~ o )  (n) 

_ ~p~t* q_ �89 Z ~ Z ~ aat,.u aa, t,,t,u (1 -- (~at,a,t,)-K] 't' (49) 
t* u a t t t 
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1 u p ~ *  Fau = B~u (HA + P~ + Pa) + ~aoo Kx - + 
(n) (~o) 

+~ ~ ~ ~ ~ ~.,,~,,~,~, (i -~Aj.u,)Kf u'. 
/~ t A t U ~ 

In  the Eqs. (49) and (50) we have made use of the following definitions : 

(50) 

P~pq = E E PA~,,,,~D,,.~ (50 
r8 

pAq = ~ E Pxl, q,,,rsD,,rs, A (52) 
I ~ r 8  

P~p~ = ~ PAloq,ArsD~t,rs (53) 
f 8  

K~oq = ~ ~ KApq,~rsD~,rs,~l (54) 
[~ r8 

P~q = ~ ~ PAloq,~,rsD~rs, B (55) 
,u ~'8 

P~* E ~ * (56) ,tpq = P,lpq,t,rs D ,urs,)~i 

K~,i = ~ KAioq,~,rsD~,~,rs (57) ).Pq 

where the index i stands for t or u in Eqs. (49) and (50). The off-diagonal Lagrang- 
ian multipliers 0a~j with i r j can be eliminated by introducing the U and T ope- 
rators as previously done Eq. (24). In  the LCAO approximation we obtain 

and 

where 

(FAt + TAt + T'~t)cat = cAtS~t t /Nat  

(FAu + U ~  + U~)  cA~ = dAu &V%~u/Na~ 

Tat = - ~(t) (SAc~t, F,ucAt -t- FAtcAt, SacAt,) 
t:  

T[~ = - ~ (SAc~FA~c~  + FAtcAu SAC~) 
u 

UA,~ = - Z (SA c~t F ~  c z  + FA~ cat S~ c~) 
t 

U'~,~ = - y('~) ( &  c~.FA~ cA,~ + F~u c ~ .  S~ cA~') �9 

(58) 

(59) 

(60) 

(6i) 

(62) 

(63) 

Eqs. (58) and (59) are the CMC SCF LCAO MO equations, where the Lagrangian 
multipliers ~ are to be identified with the orbital energies. The above formalism 
can be easily modified into the IMC SCF LCAO MO formalism. 

In  the appendix we report  the necessary modifications of the above equations 
for the case where a number  of orbitals of the (n) set are left uncorrelated (for 
example the core electrons). In  the computer program we have written, this is an 
optional input specification. 
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Appendix 

The CMC SCF LCAO M0 Equations with Core 

Let us introduce now some "core" orbitals r which are left uncorrelated: the 
corresponding electrons are never excited to orbitals of the second set. We use k 
and 1 as indices for this core set, running from i to no. The energy expression can 
be written exactly as in Eq. (7) with an additional term: 
E = formula (7) + 

n c  n c  ~, U?-~ 

2 ~  [h~ + ~, Pk~ + 2 ~  (l - At) P~t + 2 ~  BuPku]. (64) 
k = l  / = 1  t = l  u = l  

The variational principle is now applied for r Ct and Cu. We define the 
following operators on the LCAO approximation: 

F~ ~ Hx + p?re + p~ _ pA + p~ (65) 

Fat = Formula (49) + (1 - Aat) Pf~ (66) 

Fxu = Formula (50) + B~u pfo~. (67) 

We made use of the following definitions: 

~e 

D f  ~ = ~ N~c*~c~ (68) 
k = l  

I t  is found easily that  the equations which define Ce, Ct and Cu are now written in 
the form 

t t 

+ ~ (c~uS~v~uk/N~) (70) 
~t 

F~tcz = ( c ~ t S A t d N z )  + ~ (o ( c z , & ~ z ' d N ~ )  + 
t t  

u Ir 

~'~c~ = (C~u s~#~/~v~)  + ~ (~) ( c j  &O~u,~/~) + 
U t 

+ ~ (cat S~9~tu/Nxu) + ~ (eke Sx#~u/N~u). (72) 
t k 

Eqs. (71) and (72) are ~he exact counterparts of Eqs. (47) and (48). By elimi- 
nating the off-diagonM Lagrangian when necessary we obtain the following 
equations: 

(F~ ~ + R~ + R'~) c~ = ~ (cz~ S~zg~/Na~) (73) 
l 

(-Fat + T~t + T~ t + T'~t) cat = cat S~z$~tt[2g~t (74) 

( ~  + u ~  + v '~  + ui'.)ca~ = c ~ S ~ . . / ~  . (75) 

T, T',  U, U' are the operators defined in Eqs. (60) to (63). R, R', T" and U" are 
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new operators defined as: 

R~ = -- ~ ( S~ c~t FCore c~t § Fc~ore c~t S~ c~t) (76) 
t 

R~' = -- ~ (S~ C~u Fat~ c~u +Fcz  ore C~u S~ Cau) (77) 
u 

T~ = - ~ (S~c~e F~tcak + F~tc~Saca~) (78) 

U~ = -- Z (S;, c ~  Fau ca~ + F,~u c ~  S~cz~) . (79) 
k 

The secular Eqs. (29) and (30) are only changed through the expressions of E 
Eq. (64), Eoo and Etu. 
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